对数函数的运算法则

关注
对数函数的运算法则www.shan-machinery.com展开全部

由指数和对数的互相转化关系可得出:

1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即 

2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差,即

3一个正数幂的对数,等于幂的底数的对数乘以幂的指数,即

4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数,即

扩展资料:

对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}

在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。

在一个普通对数式里 ahttps://www.shan-machinery.com