Examining the effects of proximity to rail transit on travel to non

Examining the effects of proximity to rail transit on travel to nonwww.shan-machinery.com

Andrienko, G., Andrienko, N., Bosch, H., Ertl, T., Fuchs, G., Jankowski, P., & Thom, D. (2013). Thematic patterns in georeferenced tweets through space-time visual analytics. Computing in Science Engineering, 15(3), 72–82. doi: 10.1109/MCSE.2013.70

Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., … Green, P. (2017). lme4: Linear mixed-effects models using “Eigen” and S4 (Version 1.1-13). Retrieved from https://cran.r-project.org/web/packages/lme4/index.html

Boarnet, M. G., & Compin, N. S. (1999). Transit-oriented development in San Diego County: The incremental implementation of a planning idea. Journal of the American Planning Association, 65(1), 80–95. doi: 10.1080/01944369908976035

Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information, Communication & Society, 15(5), 662–679. doi: 10.1080/1369118X.2012.678878

Chaniotakis, E., Antoniou, C., Aifadopoulou, G., & Dimitriou, L. (2017). Inferring activities from social media data. Transportation Research Record: Journal of the Transportation Research Board, 2666(1), 29–37. doi: 10.3141/2666-04

Chatman, D. G. (2008). Deconstructing development density: Quality, quantity and price effects on household non-work travel. Transportation Research Part A: Policy and Practice, 42(7), 1008–1030. doi: 10.1016/j.tra.2008.02.003

Chatman, D. G. (2013). Does TOD need the T? Journal of the American Planning Association, 79(1), 17–31. doi: 10.1080/01944363.2013.791008

Chen, C., Gong, H., Lawson, C., & Bialostozky, E. (2010). Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study. Transportation Research Part A: Policy and Practice, 44(10), 830–840. doi: 10.1016/j.tra.2010.08.004

Choe, Y., Kim, J., & Fesenmaier, D. R. (2017). Use of social media across the trip experience: An application of latent transition analysis. Journal of Travel & Tourism Marketing, 34(4), 431–443. doi: 10.1080/10548408.2016.1182459

Chung, N., & Koo, C. (2015). The use of social media in travel information search. Telematics and Informatics, 32(2), 215–229. doi: 10.1016/j.tele.2014.08.005

Clifton, K. J., Currans, K. M., Cutter, A. C., & Schneider, R. (2012). Household travel surveys in context-based approach for adjusting ITE trip generation rates in urban contexts. Transportation Research Record: Journal of the Transportation Research Board, 2307(1), 108–119. doi: 10.3141/2307-12

Cole, T. J. (1991). Applied logistic regression. In D. W. Hosmer & S. Lemeshow (Eds.), New York: John Wiley & Sons. https://doi.org/10.1002/sim.4780100718

Collins, C., Hasan, S., & Ukkusuri, S. (2013). A novel transit rider satisfaction metric: Rider sentiments measured from online social media data — National Center for Transit Research. Journal of Public Transportation, 16(2), 21–45.

Crampton, J. W., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M. W., & Zook, M. (2013). Beyond the geotag: Situating ‘big data’ and leveraging the potential of the geoweb. Cartography and Geographic Information Science, 40(2), 130–139. doi: 10.1080/15230406.2013.777137

Curtin, K. M. (2007). Network analysis in geographic information science: Review, assessment, and projections. Cartography and Geographic Information Science, 34(2), 103–111. doi: 10.1559/152304007781002163

Czepiel, S. A. (2002). Maximum Likelihood Estimation of Logistic Regression Models: Theory and Implementation. Retrieved from czep. net/stat/mlelr.pdf

Dittmar, H., & Ohland, G. (2012). The new transit town: Best practices in transit-oriented development. Washington, DC: Island Press.

Dziak, J. J., Coffman, D. L., Lanza, S. T., & Li, R. (2017). Sensitivity and specificity of information criteria. Manuscript submitted for publication. doi.org/10.7287/peerj.preprints.1103v3

ESRI. (2018). ArcGIS network analyst. Retrieved from https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/what-is-network-analyst-.htm

Evans, L., & Saker, M. (2017). Location-based social media: Space, time and identity. New York: Springer.

Ewing, R., Tian, G., Lyons, T., & Terzano, K. (2017). Trip and parking generation at transit-oriented developments: Five US case studies. Landscape and Urban Planning, 160, 69–78. doi: 10.1016/j.landurbplan.2016.12.002

Faraway, J. J. (2016). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models, second edition. Boca Raton, FL: CRC Press.

Forrest, T., & Pearson, D. (2005). Comparison of trip determination methods in household travel surveys enhanced by a global positioning system. Transportation Research Record: Journal of the Transportation Research Board, 1917, 63–71. doi: 10.3141/1917-08

Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical Software, 8(15), 1–27.

Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 211–220). New York: ACM. doi: 10.1145/1518701.1518736

Greenwald, M. J., & Boarnet, M. G. (2001). The built environment as a determinant of walking behavior: Analyzing non-work pedestrian travel in Portland, Oregon. Retrieved from https://escholarship.org/uc/item/9gn7265f#metrics

Gruen, V. (1964). The heart of our cities: The urban crisis, diagnosis and cure. New York: Simon and Schuster.

Guerra, E., Cervero, R., & Tischler, D. (2012). Half-mile circle. Transportation Research Record: Journal of the Transportation Research Board, 2276, 101–109. doi: 10.3141/2276-12

Hargittai, E. (2015). Is bigger always better? Potential biases of big data derived from social network sites. The ANNALS of the American Academy of Political and Social Science, 659(1), 63–76. doi: 10.1177/0002716215570866

Hargittai, E. (2018). Potential biases in big data: Omitted voices on social media. Social Science Computer Review, 089443931878832. doi: 10.1177/0894439318788322

Higuchi, K. (2012). Quantitative content analysis or text mining by KH Coder. Retrieved from https://sourceforge.net/p/khc/wiki/KWIC%20Concordance/

Higuchi, K. (2014). KH Coder (Version 2.00 beta. 32). Retrieved from http://khcoder.net/en/

Hoback, A., Anderson, S., & Dutta, U. (2008). True walking distance to transit. Transportation Planning and Technology, 31(6), 681–692. doi: 10.1080/03081060802492785

Hong, A., Boarnet, M. G., & Houston, D. (2016). New light rail transit and active travel: A longitudinal study. Transportation Research Part A: Policy and Practice, 92, 131–144. doi: 10.1016/j.tra.2016.07.005

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. Hoboken, NJ: Wiley.

Hu, X., & Liu, H. (2012). Text analytics in social media. In Mining text data (pp. 385–414). New York: Springer. doi: 10.1007/978-1-4614-3223-4_12

Ignatow, G., & Mihalcea, R. (2016). Text mining: A guidebook for the social sciences. Thousand Oaks, CA: SAGE Publications.

Jockers, M. (2014). Text analysis with R for students of literature. New York: Springer.

Kelley, M. J. (2013). The emergent urban imaginaries of geosocial media. GeoJournal, 78(1), 181–203. doi: 10.1007/s10708-011-9439-1

King, G., & Zeng, L. (2001). Explaining rare events in international relations. International Organization, 55(3), 693–715. doi: 10.1162/00208180152507597

Kovacs-Györi, A., Ristea, A., Kolcsar, R., Resch, B., Crivellari, A., & Blaschke, T. (2018). Beyond spatial proximity—classifying parks and their visitors in London based on spatiotemporal and sentiment analysis of Twitter data. ISPRS International Journal of Geo-Information, 7(9), 378. doi: 10.3390/ijgi7090378

Krippendorff, K. (2012). Content analysis: An introduction to its methodology. Thousand Oaks, CA: SAGE.

Kurkcu, A., Ozbay, K., & Morgul, E. F. (2016). Evaluating the usability of geo-located Twitter as a tool for human activity and mobility patterns: A case study for New York City. In TRB 95th Annual Meeting Compendium of Papers. Retrieved from https://trid.trb.org/view/1393445

Lierop, D., Maat, K., & El-Geneidy, A. (2017). Talking TOD: Learning about transit-oriented development in the United States, Canada, and the Netherlands. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 10(1), 49–62. doi: 10.1080/17549175.2016.1192558

Litman, T. (2011). Evaluating accessibility for transportation planning: Measuring people’s ability to reach desired goods and activities. Victoria, BC: Victoria Transport Policy Institute.

Lüdecke, D. (2018). sjPlot-package: Data visualization for statistics in social science in sjPlot. Retrieved from https://CRAN.R-project.org/package=sjPlot

Manca, M., Boratto, L., Morell Roman, V., Martori i Gallissà, O., & Kaltenbrunner, A. (2017). Using social media to characterize urban mobility patterns: State-of-the-art survey and case-study. Online Social Networks and Media, 1, 56–69. doi: 10.1016/j.osnem.2017.04.002

Manovich, L. (2012). Trending: The promises and the challenges of big social data. In M. K. Gold (Ed.), Debates in the Digital Humanities (pp. 460–475). Minneapolis: University of Minnesota Press. doi: 10.5749/minnesota/9780816677948.003.0047

Markov, Z., & Larose, D. T. (2007). Data mining the web: Uncovering patterns in Web content, structure, and usage. Hoboken, NJ: John Wiley & Sons.

Mcculloch, C., & Neuhaus, J. (2001). Generalized linear mixed models. Hoboken, NJ: John Wiley & Sons.

Mjahed, L. B., Mittal, A., Elfar, A., Mahmassani, H. S., & Chen, Y. (2017). Exploring the role of social media platforms in informing trip planning. Transportation Research Record: Journal of the Transportation Research Board, 2666, 1–9. doi: 10.3141/2666-01

Mondschein, A. (2015). Five-star transportation: Using online activity reviews to examine mode choice to non-work destinations. Transportation, 42(4), 707–722. doi: 10.1007/s11116-015-9600-7

Munar, A. M., & Jacobsen, J. K. S. (2013). Trust and involvement in tourism social media and web-based travel information sources. Scandinavian Journal of Hospitality and Tourism, 13(1), 1–19. doi: 10.1080/15022250.2013.764511

Murray, A. T., Davis, R., Stimson, R. J., & Ferreira, L. (1998). Public transportation access. Transportation Research Part D: Transport and Environment, 3(5), 319–328. doi: 10.1016/S1361-9209(98)00010-8

Nelson, D., & Niles, J. (1999). Essentials for transit-oriented development planning: Analysis of non-work activity patterns and a method for predicting success. Proceedings of the 7th TRB Conference on the Application of Transportation Planning Methods, Boston, Massachusetts. Retrieved from http://docs.trb.org/00939750.pdf

Nikšič, M., Campagna, M., Massa, P., Caglioni, M., & Nielsen, T. (2017). Opportunities for volunteered geographic information use in spatial planning. In Mapping and the citizen sensor (pp. 327–349). London: Ubiquity Press. Retrieved from https://www.ubiquitypress.com/site/chapters/10.5334/bbf.n/

Noland, R. B., Weiner, M. D., DiPetrillo, S., & Kay, A. I. (2017). Attitudes towards transit-oriented development: Resident experiences and professional perspectives. Journal of Transport Geography, 60, 130–140. doi: 10.1016/j.jtrangeo.2017.02.015

Olszewski, P., & Wibowo, S. (2005). Using equivalent walking distance to assess pedestrian accessibility to transit stations in Singapore. Transportation Research Record: Journal of the Transportation Research Board, 1927, 38–45. doi: 10.3141/1927-05

O’Sullivan, S., & Morrall, J. (1996). Walking distances to and from light-rail transit stations. Transportation Research Record: Journal of the Transportation Research Board, 1538, 19–26. doi: 10.3141/1538-03

Quantcast. (2017). Yelp audience insights and demographic analytics. Retrieved from https://www.quantcast.com/yelp.com/demographics/WEB?country=US

R Core Team. (2017). R: A language and environment for statistical computing. Retrieved from https://www.r-project.org/

Rashidi, T. H., Abbasi, A., Maghrebi, M., Hasan, S., & Waller, T. S. (2017). Exploring the capacity of social media data for modelling travel behavior: Opportunities and challenges. Transportation Research Part C: Emerging Technologies, 75, 197–211. doi: 10.1016/j.trc.2016.12.008

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 532–538). New York: Springer. doi: 10.1007/978-0-387-39940-9_565

Reilly, M. K., O’Mara, M. P., & Seto, K. C. (2009). From Bangalore to the Bay Area: Comparing transportation and activity accessibility as drivers of urban growth. Landscape and Urban Planning, 92(1), 24–33. doi: 10.1016/j.landurbplan.2009.02.001

Rissel, C., Curac, N., Greenaway, M., & Bauman, A. (2012). Physical activity associated with public transport use—a review and modelling of potential benefits. International Journal of Environmental Research and Public Health, 9(7), 2454–2478. doi: 10.3390/ijerph9072454

Rybarczyk, G., Banerjee, S., Starking-Szymanski, M. D., & Shaker, R. R. (2018). Travel and us: The impact of mode share on sentiment using geo-social media and GIS. Journal of Location Based Services, 12(1), 40–62. doi: 10.1080/17489725.2018.1468039

Sedera, D., Lokuge, S., Atapattu, M., & Gretzel, U. (2017). Likes—the key to my happiness: The moderating effect of social influence on travel experience. Information & Management, 54(6), 825–836. doi: 10.1016/j.im.2017.04.003

Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., & Haklay, M. (2017). A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science, 31(1), 139–167. doi: 10.1080/13658816.2016.1189556

Statistics Canada. (2016). Data products, 2016 Census. Retrieved from https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm

Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics — challenges in topic discovery, data collection, and data preparation. International Journal of Information Management, 39, 156–168. doi: 10.1016/j.ijinfomgt.2017.12.002

Stopher, P., Jiang, Q., & FitzGerald, C. (2005). Processing GPS data from travel surveys. Australasian Transport Research Forum (ATRF), 28th, 2005, Sydney, New South Wales, Australia.

Stopher, P. R., & Greaves, S. P. (2007). Household travel surveys: Where are we going? Transportation Research Part A: Policy and Practice, 41(5), 367–381. doi: 10.1016/j.tra.2006.09.005

Trajdos, P., & Kurzynski, M. (2018). Weighting scheme for a pairwise multi-label classifier based on the fuzzy confusion matrix. Pattern Recognition Letters, 103, 60–67. doi:org/10.1016/j.patrec.2018.01.012

Tung, E. (2015, September 2). Automatically categorizing Yelp businesses. Retrieved from https://engineeringblog.yelp.com/2015/09/automatically-categorizing-yelp-businesses.html

U.S. Census Bureau. (2016). US Census Bureau: American community survey, 2016 5-year estimates. Suitland, MD: US Census Bureau.

Vinithra, S. N., Selvan, S. J. A., Kumar, M. A., & Soman, K. P. (2015). Simulated and self-sustained classification of Twitter data based on its sentiment. Indian Journal of Science and Technology, 8(24), 1–7. doi: 10.17485/ijst/2015/v8i24/80205

Vuchic, V. R. (2017). Urban transit: Operations, planning and economics. Hoboken, NJ: J. Wiley & Sons.

Walle, S., & Steenberghen, T. (2006). Space and time related determinants of public transport use in trip chains. Transportation Research Part A: Policy and Practice, 40(2), 151–162. doi: 10.1016/j.tra.2005.05.001

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107. doi: 10.1109/TKDE.2013.109

Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. Tourism Management, 31(2), 179–188. doi: 10.1016/j.tourman.2009.02.016

Yelp. (2017a). API 2.0: All category list. Yelp for developers. Retrieved from https://www.yelp.com/developers/documentation/v3/all_category_list

Yelp. (2017b, January). Yelp dataset challenge. Retrieved from https://www.yelp.com/dataset_challenge

Yelp. (2017c, March). Yelp factsheet. Retrieved from https://www.yelp.com/factsheet